
MathPSfrag: LATEX labels in Mathematica plots

Johannes Große

Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
jgrosse (at) mppmu dot mpg dot de

http://wwwth.mppmu.mpg.de/members/jgrosse

Abstract

A Mathematica
® package that allows inclusion of LATEX labels in EPS graphics

using PSfrag will be presented. The clue is that positioning information and
TEX code is automatically generated by the package. It also contains a preview
capability that imports a bitmap of the final image including the rendered LATEX
labels back into Mathematica.

1 Introduction

Mathematica (Wolfram, 1999; Wolfram Research,
Inc., 2005) is one of the major commercial computer
algebra systems and as such used in many fields of
scientific research.

Unfortunately, labels in graphics produced by
Mathematica—like those of most other graphics
programs—are not visually compatible with TEX’s
standard fonts. Even though Mathematica pro-
vides advanced typesetting capabilities for complex
mathematical expressions that are close to a faithful
representation of standard mathematical notation, it
cannot compete with TEX in this regard.

MathPSfrag (Große, 2005) is intended to fill this
gap, but it is also meant to address another problem:
Many authors consider the layout of the manuscript
as something to be safely left to the computer. While
TEX does a remarkable job in providing excellent
typesetting with little user intervention, the same
cannot be said about image preparation.

Solutions to the common task of attaching labels
to plots range from sophisticated (McKay and Moore,
1999) to crude: conversion of the exported EPS file to
JPEG, editing in a graphics program, back conversion
to EPS for inclusion in LATEX.

From the latter example it is clear that any
solution addressing this problem needs to work not
only from a typesetting point of view but also from
a daily user’s perspective. MathPSfrag is an attempt
to combine the existing technique of PSfrag (Grant
and Carlisle, 1998) with a transparent, easy to use
convenience layer.

The PSfrag package provides TEX macros that al-
low replacement of text strings (“tags”) in EPS graph-
ics. For PSfrag to work these tags have to be output
unaltered using a single PostScript show directive.
Since Mathematica splits complicated expressions
into several show commands, simple alphanumeric

(a) Conventional Mathematica without MathPSfrag

(b) The same plot after automatically substituting all Text
primitives (including tick mark labels) by LATEX output.

Figure 1: Old vs. new graphics export

sequences have to be used as tags, which makes the
resulting raw EPS file rather illegible. Bookkeeping
of automatically generated tags was the only feature
provided by the very first version of MathPSfrag,
although several more sophisticated features have
been added since.

Ideally MathPSfrag does not require any user

184 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

MathPSfrag: LATEX labels in Mathematica plots

f1[x_] := Sin[x]; f2[x_] := 3*((Cos[2 Sqrt[x]])^2)^(1/3);

rawplot = Plot[{f1[x], f2[x]}, {x, 0, 2 Pi}, PlotStyle→{Hue[1.0], Hue[0.6]}, Frame→True,

FrameTicks→{Pi/2*{0, 1, 2, 3, 4}, Automatic, None, None}];

Needs["Graphics‘Arrow‘"];

SimpleLabel[tip : {_, _}, txt_, txtpos : {_, _}, align : {_, _}] := Sequence[

Arrow[txtpos, tip, HeadScaling→Absolute, HeadLength→8, HeadCenter→0.6],

Text[txt, txtpos, align]];

textlabels = Graphics[{

SimpleLabel[{Pi/2, f1[Pi/2]}, "local maximum", {1, -0.5}, {0, 1}],

SimpleLabel[{7/6Pi, f1[7/6Pi]}, f1[x], {4.2, -0.3}, {-1, 0}],

SimpleLabel[{4.2, f2[4.2]}, f2[x], {3.5, 1.5}, {1, 0}]

}];

mygrid = Map[{#, {AbsoluteDashing[{0.1, 1}], GrayLevel[0.5]}} &, {Pi*{1/2, 1, 3/2}, {1, 2}}, {2}];

exampleplot = Show[rawplot, textlabels, GridLines→mygrid];

Figure 2: Full Mathematica code for the plot in Figure 1(a).

intervention except for calling a different graphics
export command from within Mathematica.

MathPSfrag will take over the task of inserting
tags into the EPS in place of the original labels and
will also use Mathematica’s TeXForm command to
determine the LATEX macros reproducing a pretty-
printed version of the original Mathematica expres-
sion. These macros are written to a separate TEX
file. In a second step, a LATEX, dvips, Ghostscript
sequence is carried out to merge the two files to a
single EPS that is independent of PSfrag and will be
called “unpsfraged” in the following. As such it can
be (and by default is) converted into a PDF image
suitable for inclusion in pdfLATEX documents. More-
over a bitmap image is rendered and imported back
into Mathematica as a preview.

In reality there are a number of problems that
can arise—the simplest would be Mathematica

producing undesired or flawed TEX code, such that
the above rendering sequence would fail. Since the
process of image creation described in this article
involves many programs and production steps, there
is actually quite a lot of potential for malfunction. In
the first section of this tutorial we will nevertheless
assume that this does not happen and that MathPS-

frag has already been set up correctly to find LATEX,
dvips and Ghostscript. In subsequent sections, we
will discuss these points in more detail. For a full
presentation of all options and extended examples,
the reader is referred to the manual accompanying
MathPSfrag.

We would like to point out that we denote three
different objects psfrag : the LATEX package PSfrag,
which provides the LATEX macro \psfrag, and its
Mathematica counterpart PSfrag.

2 A first example

For concreteness we will start by defining a conven-
tional Mathematica plot without any reference to
MathPSfrag. We will try to make it as beautiful as
possible for a fair comparison with MathPSfrag. The
code given in Figure 2 performs the following actions
to draw Figure 1(a).

The first line defines the functions to be plot-
ted, which happens in the second line. This already
gives a decent plot, but to show off MathPSfrag’s
capabilities a few more elements are inserted into
the plot. The third block of commands loads a stan-
dard Mathematica package and defines the function
SimpleLabel, which draws an arrow and attaches
a textual expression to the arrow. It is then used
to define the three text labels seen in the plot. (By
“textual expression” we denote all expressions that
at some point end up as the argument of a Text

primitive, in other words the expressions we want
to replace by LATEX commands eventually.) As a
finishing touch, a grid of light gray lines is created.
The last line merges all those elements into the final
plots in Figure 1.

An EPS image can be produced by a simple
Export[exampleplot,"exampleplot.eps"]. How-
ever, by default Mathematica unfortunately uses
Courier as a font for the labels, and does not allow
inclusion of fonts into the EPS image (for Mathemat-

ica versions before 4.2.1); as a result, any symbols,
such as large brackets, that require Mathematica’s
special fonts can only be processed when the TEX
distribution has been set up to find these fonts (WRI

Support, 2007). For later Mathematica versions
we should rather export the plot by:

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 185

Johannes Große

Export[Show[exampleplot,

TextStyle→{FontFamily→"Times"}],

"pure-mma.eps", ConversionOptions→

{"IncludeSpecialFonts"→True}]

which sets the default font to Times Roman.
The corresponding export commands provided

by MathPSfrag read

Needs["MathPSfrag‘"];

PSfragExport[exampleplot, "filename"]//UnPSfrag;

which loads the MathPSfrag package and creates files
filename-psfrag.tex and filename-psfrag.eps

containing the PSfrag versions of the plot.
The UnPSfrag command takes these files and

creates an unpsfraged PDF and EPS version, which
in turn is rendered into a bitmap, imported into
Mathematica and displayed as a preview. When
the user wants to use only the PSfrag versions of the
images, the UnPSfrag command can be omitted. The
package is accompanied by a shell script for merging
the two files into an unpsfraged EPS file. This may be
useful when there is no LATEX distribution available
on the machine where Mathematica resides.

In general, it is recommended not to rescale

unpsfraged images within the LATEX source of the
final manuscript, because such a rescaling would
also change the size of the rendered LATEX expres-
sions. While on modern TEX installations chances
are good to end up with the scalable outline ver-
sions of Computer Modern in the EPS files because
MathPSfrag by default invokes dvips with the -Ppdf
switch, the overall visual consistency of the final
manuscript will suffer from labels of different sizes.
Hence it is recommended to set the size of the image
at rendering time by providing suitable options to
the \includegraphics command that is internally
invoked by UnPSfrag. This can be achieved by

UnPSfrag[PSfragExport[exampleplot, "filename"],

IncludeGraphicsOptions→"width=75mm"];

which will preserve the labels, while scaling the image
approximately to the given size. The reason for the
mismatch of size is that the bounding box of the
final image correctly fits its contents while the size
provided by the user refers to the bounding box of
the original image, which changes during the PSfrag

process.
When special symbols or different fonts are re-

quired for the graphics, UnPSfrag can be instructed
to include a user-defined preamble by means of the
TeXPreamble option.

3 Providing custom LATEX commands

MathPSfrag generates LATEX commands by employing
Mathematica’s TeXForm, whose output may not
always be what the author expected. In particular,
the output of TeXForm depends very much on the
version of Mathematica— versions 5.1 or later are
most suitable, though a compatibility TEX package
has been implemented; see ‘Known limitations’.

For overriding MathPSfrag’s default treatment
of single textual elements of the plot, the PSfrag

command is provided. It can be simply wrapped
around the argument of a Text primitive or a plot
option that eventually produces a Text primitive.
Most frequently used examples for the latter case are
the PlotLabel and AxesLabel options. So instead
of PlotLabel→"chi-square test", the following
could be used:

PlotLabel→PSfrag["chi-square-test",

TeXCommand→"$\\chi^2$-test"]

This would still display as “chi-square test” in
Mathematica, but appear as “χ2-test” in the final
manuscript. Note that a doubling of any backslash in
the argument of the TeXCommand options is required
because Mathematica considers the backslash char-
acter to be an escape symbol.

Since Mathematica provides the means for en-
tering formatted expressions as part of ordinary text
strings, the above example is somewhat artificial.
The same effect could have been achieved by simply
using PlotLabel→"χ2-test" and relying on Math-

PSfrag (or to be more precise TeXForm) to produce
the corresponding TEX representation.

A more realistic example would be changing one
of the labels in Figure 1(b) by replacing

3 3

√

cos2(2
√

x) by 3
∣

∣

∣
cos

√
4x

∣

∣

∣

2

3

.

This can be achieved by substituting the argument
of the corresponding SimpleLabel line in Figure 2.

tex="$3\\left|\\cos\\sqrt{4x}\\right|^

... \\frac{2}{3}$";

SimpleLabel[{4.2, f2[4.2]},

PSfrag[f2[x],TeXCommand→tex] ,

{3.5, 1.5}, {1, 0}]

The additional command has been written in italics;
the resulting plot is shown in Figure 3.

PSfrag can also be used to pass alignment in-
formation, (angular) orientation or a scale factor to
MathPSfrag. The respective options (TeXPosition,
PSPosition, PSRotation, PSScaling) are in a one-
to-one correspondence with the options of the com-
mand \psfrag provided by the LATEX package. In

186 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

MathPSfrag: LATEX labels in Mathematica plots

Figure 3: Manual replacement of the “cos . . . ” label.

particular, the first two options accept strings built
from two characters (top, center, Baseline, bottom,
plus left, right, center) describing the vertical and
horizontal position of an anchor point in the tag and
LATEX box. When replacing the tag by the LATEX
box, the new anchor point is glued to the position
of the old one. Rotation is in degrees; the use of
the scale factor is discouraged and provided only for
completeness’ sake.

Unless three-dimensional plots are used none
of the above should be necessary. As a last resort,
when there is a positioning bug, one may use the
TeXShift→{"x","y"} option. MathPSfrag shifts
the content of the corresponding expression by the
amount specified in the two strings, which should
contain valid TEX dimensions.

4 Setup

As mentioned in the introduction, we left out some
crucial points. The most important of these is that
MathPSfrag needs information about the actual loca-
tion of the LATEX, dvips and Ghostscript executables
unless they can be found in the system’s execution
path. (Specifically, these binaries are needed by
UnPSfrag whereas the other parts of MathPSfrag

will continue to work without them. This is the main
reason for having a separate UnPSfrag command
at all.) While this is usually the case for Unix-
like operating systems, it is rather the exception for
Windows-based systems. Moreover, MathPSfrag by
default uses the typical system-specific names of the
executables, which might differ on some installations.

The user can either fix the system settings or
provide the absolute path to the executables by set-
ting the appropriate UnPSfrag options as outlined
in Figure 4(a). The configuration may be checked by
executing MathPSfragConfigurationTest, which
will output diagnostic information. Step-by-step
instructions guiding through the configuration are
provided in a separate Mathematica notebook

(“MathPSfrag-Test.nb”), which also generates a
number of examples.

In order to avoid the necessity of setting the cor-
rect paths each time MathPSfrag is loaded, the con-
figuration can also be stored in an init.m file, which
is automatically loaded by Mathematica during
start-up. Valid locations of the init.m file depend
both on the operating system and on the Mathemat-

ica version, but are documented in Mathematica’s
Help Browser. A typical example for such a file is
given in Figure 4(b).

SetOptions[UnPSfrag,

LaTeXExecutable→"C:\\path-to\\latex.exe",

DvipsExecutable→"C:\\path-to\\dvips.exe",

GhostscriptExecutable→

"C:\\path-to\\gswin32c.exe"];

(a) Setting the locations of external programs

AppendTo[$Path, "C:\\path-to\\MathPSfrag"];

$PostMathPSfrag := SetOptions[UnPSfrag,...];

(b) Minimal init.m file

Figure 4: Configuration of MathPSfrag

5 In the manuscript

Unpsfraged graphics can be treated in the usual
manner and included by the \includegraphics com-
mand, where it is good practice to leave out the file’s
suffix to allow LATEX or pdfLATEX to load the appro-
priate format. For best quality it is recommended
to avoid usage of the width or height options, but
instead to set the size of the plot during creation
from within Mathematica as described in ‘A first
example’.

PSfrag-based graphics are generically included
as follows:

\usepackage{psfrag,graphicx}

...

\begin{psfrags}

\input{exampleplot-psfrag}

\includegraphics[width=75mm,

trim=-10 -20 -30 -40]{exampleplot-psfrag}

\end{psfrags}

where any numbers of course have to be adapted.
The trim option enlarges the bounding box when
negative arguments are used, which is sometimes re-
quired to avoid clipping problems. Hence one should
always check the bounding box by enclosing each
\includegraphics macro by an \fbox.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 187

Johannes Große

6 Known limitations

As mentioned in the introduction for the sake of pre-
sentation we have ignored all potential problems so
far. It is however vital to point out that image pro-
duction with MathPSfrag employs several programs
which come in different versions and installations on
different computer systems with all the associated
compatibility problems. The work flow also involves
a number of user decisions, which have a strong im-
pact on the final image. For the discussion of these
choices it is convenient to think of the process of
manuscript creation in terms of the following stages.

1. Plot preparation with Mathematica

2. Export with MathPSfrag

3. Manuscript preparation (and inclusion of im-
ages)

4. Output format generation (PS or PDF)

We will discuss these stages in reverse order.
Let us assume that the final output format should
be PDF. There are currently two possibilities to
achieve this. Either following the traditional path
of translating the manuscript with LATEX, dvips

and a distillation to PDF, e.g., by ps2pdf; or using
pdfLATEX with its enhanced typesetting capabilities.
Since this choice is not necessarily under the author’s
control, it may be wise to keep both paths open.

When using unpsfraged images, this amounts to
simply invoking \includegraphics without provid-
ing the filename’s suffix and placing both the EPS

and PDF version of the image where TEX can find
them. When using PSfrag-based images, due to their
PostScript-centric nature, additional effort is neces-
sary to make these work with pdfLATEX. Fortunately,
because of the popularity of the pstricks package
there are several packages that provide methods for
incorporating PostScript into pdfLATEX documents,
namely pdftricks, pst-pdf and ps4pdf. While they
differ considerably regarding ease-of-use and limita-
tions of the respective implementation, all of them
generate PDF versions of PostScript related images
essentially by extracting them from a conventional
LATEX run. An example file for each of those packages
accompanies MathPSfrag.

Before deciding whether to employ PSfrag-based
or unpsfraged images, one should keep in mind that
unpsfraged images are hard to edit: They neither
allow rescaling without changing the size of the la-
bels nor is there an easy method of changing the
contents of the labels. It is therefore advisable to
design the Mathematica notebook generating the
plots in such a way that replotting can be achieved
without recalculating. In other words the result of
a time-consuming calculation should be stored sepa-

rately before plotting. Moreover the author should
know in advance which fonts will be used for the
final manuscript. These can be loaded by setting
the TeXPreamble option of UnPSfrag to a suitable
\usepackage command.

For PSfrag-based images changing a label only
requires editing the corresponding \psfrag macro in
the TEX file associated to the image, whereas rescal-
ing of the image will preserve the size of the labels.
However, PSfrag-based images always have a wrong
bounding box, which can potentially lead to clipping
errors and should therefore be manually corrected
by use of the trim option for \includegraphics.
Wrapping an \fbox around the image while doing
so considerably facilitates this task.

The limitations of MathPSfrag we now discuss
are mainly due to its dependence on three Math-

ematica functions: TeXForm, FullGraphics and
AbsoluteOptions.

The output of TeXForm consists of a Mathe-

matica-specific set of LATEX commands for versions
earlier than 5.1, whereas starting from 5.1 amsmath

macros are used. While still having deficiencies re-
garding symbols that do not have a direct LATEX
counterpart, the latter is most suitable for use with
MathPSfrag. The output of earlier Mathematica

versions, on the other hand, except for very basic
expressions, will require a compatibility layer, which
is part of the MathPSfrag distribution. It does how-
ever need to be installed where LATEX can find it
when called by UnPSfrag and should also accom-
pany the manuscript when PSfrag-based images are
used. Alternatively it is of course possible to manu-
ally provide LATEX macros with the PSfrag command
as described in ‘Providing custom LATEX commands’.

Both FullGraphics and AbsoluteOptions con-
vert (certain aspects of) Mathematica graphics
from a logical to a physical representation in terms
of so-called primitives. MathPSfrag needs this phys-
ical representation for the extraction of alignment
information of all text elements of a plot as well
as for content generation in the case of tick marks.
Unfortunately, neither command is faithful; i.e., they
do not preserve the visual appearance of the plot.
MathPSfrag has been carefully implemented to work
around these shortcomings, but fails at one minor
point: Floating point numbers very close to integers
(difference < 10−10) will be rounded.

While MathPSfrag should be able to correctly
position and align any text elements, the respective
options of PSfrag can also be used as a quick and
dirty solution to any misplacements. In particular
the TeXShift option is provided solely for this pur-
pose since it is not used during default processing

188 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

MathPSfrag: LATEX labels in Mathematica plots

Figure 5: Three dimensional example: As there exists
no FullGraphics3D command, manual labeling was
required.

at all. In the case of any such misplacements, the
author would appreciate a bug report.

Moreover there is no FullGraphics command
for three-dimensional plots. As a consequence, the
required alignment information has to be provided
by hand for every text element of a plot. This sounds
more tedious than it actually is in most cases—ex-
ample code is provided as part of MathPSfrag. Here
it shall suffice to show the result; cf. Figure 5.

Finally, MathPSfrag does not provide methods
to construct correct tick mark content as it is strictly
focused on shape. It does however integrate well
with the CustomTicks package (Caprio, 2005), which
provides that functionality.

7 Conclusion

MathPSfrag provides a convenient interface to PSfrag

permitting the generation of high-quality labels in
Mathematica graphics. While it automates all
tedious aspects of PSfrag, it still allows the user to
seamlessly override all of its internal assumptions.
The possibility to create images that do not depend
on PSfrag anymore provides a simple method for
achieving pdfLATEX compatibility.

MathPSfrag has been tested with Mathemat-

ica versions 4.1, 5.0 and 5.2 under Linux and Win-
dows XP. A previous version has also been tested
under Mac OSX.

For the future it would be interesting to incor-
porate the PSfragx extension that allows including
the \psfrag commands into the comment lines of
the EPS file. It would also be interesting to provide
means for the generation of \overpic commands,
thus bypassing many of the shortcomings of the PS-

frag approach. For Mathematica, because of its
closed source nature, this is not a simple task be-
cause the position information of graphics primitives
in terms of absolute coordinates for the final image
is not easily accessible.

8 Acknowledgments

The author acknowledges support by ENRAGE (Euro-
pean Network on Random Geometry), a Marie Curie
Research Training Network in the European Commu-
nity’s Sixth Framework Programme, network contract
MRTN-CT-2004-005616. Part of the work on MathPS-

frag were supported by the DFG Graduiertenkolleg “The
Standard Model of Particle Physics — structure, precision
tests and extensions” at Humboldt-Universität zu Berlin
and the Max-Planck-Institut für Physik, München.

References

Caprio, Mark. “Custom tick marks for linear,
logarithmic, and general nonlinear axes”.
http://library.wolfram.com/infocenter/

MathSource/5599/, 2005.

Grant, Micheal C., and D. Carlisle. “The PSfrag
system, version 3”. Available from CTAN,
macros/latex/contrib/psfrag, 1998.

Große, Johannes. “MathPSfrag”. http://wwwth.mppmu.
mpg.de/members/jgrosse/mathpsfrag, 2005.

McKay, Wendy, and R. Moore. “Convenient Labelling of
Graphics, the WARMreader Way”. TUGboat 20(3),
262–271, 1999. http://www.tug.org/TUGboat/
Articles/tb20-3/tb64ross.pdf.

Wolfram, Stephen. The Mathematica book. Cambridge
University Press, New York, NY, USA, 4th edition,
1999.

Wolfram Research, Inc. “Mathematica 5.2”. 2005.
http://www.wolfram.com/.

WRI Support. “Mathematica Fonts in EPS files and
Ghostscript”. Available from http://support.

wolfram.com/mathematica/graphics/export/;
ghostscript.html, includefonts.html, 2007.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 189

http://library.wolfram.com/infocenter/MathSource/5599/
http://library.wolfram.com/infocenter/MathSource/5599/
http://www.ctan.org/tex-archive/macros/latex/contrib/psfrag
http://wwwth.mppmu.mpg.de/members/jgrosse/mathpsfrag
http://wwwth.mppmu.mpg.de/members/jgrosse/mathpsfrag
http://www.tug.org/TUGboat/Articles/tb20-3/tb64ross.pdf
http://www.tug.org/TUGboat/Articles/tb20-3/tb64ross.pdf
http://www.wolfram.com/
http://support.wolfram.com/mathematica/graphics/export/
http://support.wolfram.com/mathematica/graphics/export/
http://support.wolfram.com/mathematica/graphics/export/ghostscript.html
http://support.wolfram.com/mathematica/graphics/export/includefonts.html

	Introduction
	A first example
	Providing custom LaTeX commands
	Setup
	In the manuscript
	Known limitations
	Conclusion
	Acknowledgments

