
CurExt, Typesetting Variable-Sized Curved Symbols

Azzeddine Lazrek
Department of Computer Science, Faculty of Science,
University Cadi Ayyad, P.O. Box 2390, Marrakech, Morocco
Phone: +212 44 43 46 49 Fax: +212 44 43 74 07
lazrek@ucam.ac.ma
http://www.ucam.ac.ma/fssm/rydarab

Abstract

The main goal of this contribution is to present a program that allows the composition of variable-
sized curved symbols such as those occurring in mathematics. This application, called CurExt,
extends the capabilities of the well-known TEX system designed by D. E. Knuth for typesetting.
Big delimiters, such as brackets, or special curved symbols, such as the Arabic mathematical sum-
mation symbol, can be built automatically according to the size and the shape of the concerned
mathematical expression. CurExt will make it possible to stretch Arabic letters according to calli-
graphic rules in order to draw the kashida. It follows a useful tool for justifying texts written with
the Arabic alphabet. Unlike in Latin alphabet based writing, where the justification is done through
inserting small blanks among characters, cursive writing fills in the space between characters with
the kashida.

Résumé
L’objet principal de cette contribution est de présenter un programme qui permet la composition
de symboles curvilignes extensibles comme ceux qui se présentent en mathématique. Cette appli-
cation, appelé CurExt, étend les capacités du système bien connu TEX développé par D. E. Knuth
pour la composition de document. Les grands délimitants, comme les parenthèses, ou les symboles
curvilignes spéciaux, comme le symbole arabe pour la somme, peuvent être composés automatique-
ment suivant la taille de l’expression mathématique contenue. CurExt permettra également l’allon-
gement de certaines lettres arabes, de façon curviligne, en accord avec des règles de la calligraphie.
Un corollaire important de cette possibilité de traiter la kashida sera de permettre la justification
du texte arabe. Rappelons que là, il s’agit d’un problème profond dû au fait que la justification dans
une écriture cursive, comme l’arabe, se fait à l’aide de la kashida, à l’opposé du moyen de justifi-
cation des textes à écriture non cursive, qui se fait au moyen d’une distribution adéquate de blancs
entre les mots de la ligne.

The problem
Variable-sized symbols Besides fixed size symbols, such
as characters of the Latin alphabet in a given font or ba-
sic mathematical symbols (e.g., +, −), there are symbols
with a context dependent size. Some mathematical sym-
bols, such as delimiters or Arabic characters, are exam-
ples of these variable-sized symbols. The variation of
size can concern:
• the width of the symbol, such as in:

– the various parts of some symbols (e.g.,
〉

or
�
, ⇒). A horizontal stretching, according

to the expression covered by the operator, is
sometimes necessary;

– the kashida for some characters of the Ara-
bic alphabet (e.g., �

�
, �

�
) or certain Ara-

bic mathematical symbols such as those found
in the abbreviations of usual functions (e.g.,
�Æ, ��� , ���) in mathematical

expressions. The kashida�, a small curve,
is used to stretch some characters in order to
cover the concerned mathematical expression
or to break the line when the left margin is
reached;

– some diacritics or accents (e.g., abc, abc, âbc,

ãbc, ←−abc, −→abc,
︷︸︸︷
abc , abc︸︷︷︸ or

���︸︷︷︸ �
︷︸︸︷
��� � −→��� � ←−��� � �̃�� � �̂�� � ��� � ���).

• the length of the symbol, such as in:
– delimiters (e.g., 〈, (, |, [, ||, {, }, ||,], |,), 〉);
– symbols of operators (e.g.,

∫
or
�
,
�
� , ⇑).

• the width and the length of the symbol, such as

in some mathematical symbols: (e.g.,
√

or�
).

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003 323

Azzeddine Lazrek

Production of the variable-sized symbols Several differ-
ent approaches can be adopted to produce variable-sized
symbols:
• Through measuring: glyphs are made on the basis of
measurements directly taken from the context of the
symbol. This manner leads to a very high preci-
sion but is a posteriori. A second processing of the
text is absolutely necessary, after a first one where
measurements of sizes are taken and recorded. The
glyphs can be produced once the measurements are
made. This way of proceeding makes it possible
to have one glyph of sign per size through dynamic
fonts.

• Ready to wear: standardized sizes are determined.
Glyphs are then drawn according to this set of
sizes. No second processing will be necessary of
course. The precision cannot reach the level at-
tained through the previous manner. A glyph of
sign per interval of sizes, through static fonts, is then
produced a priori.

• Semi-finished: a combination of the two previous
ways.

There is a difference between producing these
glyphs and using them. The production can be done
through programs, with parameters to be determined,
with METAFONT or PostScript. A particular system of
editing will be necessary to make use of the glyphs. This
system will be used to send the required parameters to
the previous program for generating the fonts.

Curvilinearity of the variable-sized symbols Besides sym-
bols drawn with segments (e.g., [,], ⇒), there are
variable-sized symbols composed with small curves (e.g.,
(,),

∫
). Thus, the extensibility of the symbol should be

done with respect to this curvilinearity. The task be-
comes difficult for the shapes of the curves that vary ac-
cording to the size. Then, the problem is not limited
to stretching or lengthening these curves. It consists of
producing curves according to different sizes. As far as
we know, up till now, there is no system that allows the
production of variable-sized curved symbols through pa-
rameterized dynamic fonts. Say, for example, a curvi-
linear variable-sized parenthesis. Neither TEX [5] nor
MathType1 offers such a possibility. An attempt had
been made with the Math-Fly3 font [1] in the system
Grif/Thot4 [10]. It didn’t go far from initial exper-

1. MathType is an equations processing system, including

Equation Editor, from Design Science, Inc.2

2. http://www.mathtype.com or http://www.dessci.com
3. Math-Fly is a parameterized PostScript type 3 font.

4. Thot is an interactive system for the production of struc-

tured document. It is an evolution of the Grif system developed

by the Opera team with the INRIA and the IMAG. Amaya, the
W3C browser,5is based on this system.

5. http://www.w3.org

imentation, nor has it been added to the system. The
system Ω6 doesn’t offer the possibility of producing such
symbols. An extension to ditroff/ffortid7 allows the
abilities to stretch letters themselves with dynamic Post-
Script fonts [3].

A very detailed survey on the ways for producing
variable-sized symbols and the general problem of the
optical scaling can be found in [1].

The parentheses in big sizes, say, for example, those

of matrices offered by TEX, look like this:

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠.

Can we get curved parentheses such as: � � ?

In the same way, one can wonder how to produce
kashida so as to get the correct writing:�Æ, instead of
the simple straight-line lengthening:������

�

� .

Variation of symbol sizes in TEX
TEX handles the problem of producing variable-sized
symbols through two different ways at the same time,
with the Computer Modern font developed by D. E.
Knuth in METAFONT [6]:
• through the production, a priori, of glyphs up

to some sizes8 (e.g.,

((((
()

))))
), using the

primitive charlist from METAFONT;
• through composition, starting from small parts,
whenever the size goes beyond some level (e.g.,⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠), using the primitive extensible from

METAFONT. Horizontal or vertical segments are
then added to get the desired size (e.g., ︸︷︷︸︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

6. http://omega.enstb.org
7. ditroff/ffortid is a system for formatting bi-directional

text in Arabic, Hebrew and Persian developed by J. Srouji and

D.M. Berry [11].

8. Some other sizes can be obtained by yhmath package, which
extended math fonts for LATEX, developed by Y. Haralambous:

CTAN:/macros/latex/contrib/yhmath

324 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

CurExt, Typesetting Variable-Sized Curved Symbols

or

{{{{{).
When a certain size limit is reached, some sym-

bols can’t be extended any more8 (e.g., â, âb, âbc, âbcd,̂abcde).
The primitives \Bigg, \bigg, \Big and \big

(e.g., \Bigg(... \Bigg)) denote various possibilities
of extension that the user can specify to get the de-
sired size. The primitives \left and \right (e.g.,
\left(... \right)) allow an automatic determina-
tion of the size according to the context.

The TEX compiler keeps room for each character.
The character is considered as a rectangular box, with
a width and length, on a baseline, passing between the
height and the depth. These values are taken from the
corresponding TFM files of the fonts in use.

The font should be determined a priori in the
preamble of the document. No specification of size will
be allowed while the document is processed. A possibil-
ity of magnification, for all text, is allowed a priori, in the
preamble of the document. This magnification consists of
a reduction or an enlargement of the font.

Curvilinear extensibility
Parameters of dynamic font Hereafter, a solution for ob-
taining variable-sized curved symbols is proposed. The
particular case of parentheses, brackets of a mathematical
expression, will be presented in detail, as an example of
vertical extensibility. The kashida, as an example of hor-
izontal extension, will be presented also. It goes without
saying that all other variable-sized curved symbols can be
handled in the same way.

The size of such symbols is determined a posteri-
ori according to the context. Instead of taking the size
of the symbol from the TFM files of the specified font,
this size is computed starting from the size of the mathe-
matical expression covered by the symbol. The required
room is then reserved (using the TEX primitives \hbox
and \vbox with \wd, \ht and \dp). Then, the program
METAFONT is called to generate the fonts according to
the computed sizes. Thus, dynamic fonts are built.

The necessary repetition of processing is not a prob-
lem, for TEX will already be called two times at least for
the table of the contents, the bibliography, the index, etc.

This way of processing will lead to the following
constraints:
• there is a need for one font per character. TEX
can use simultaneously up to 16 math font families.
This can be a restriction of the number of variable-
sized symbols that can be processed;

• for every variable-sized symbol, a file for storing
the sizes computed after the first compilation is re-

quired. The number of files allowed by TEX for
the input/output (by using the primitives \read and
\write) is limited to 16. That also limits the num-
ber of variable-sized symbols to deal with;

• the program METAFONT allows up to 256 symbols
per font processed by TEX. This seems to limit the
number of different sizes of glyphs. This is not a
true limitation because the width of a symbol is al-
ready limited by the width of the sheet and likewise
for the length.

Actually, the number of required files can be re-
duced through the use of the same file for each pair
of delimiters: the closing bracket is generally required
wherever an opening one appears. Thus, the same file
will be used for the two brackets. Another reduction in
the number of required files may be carried out through
recording a size only once for all the occurrences of a
given symbol at a given size. TEX doesn’t allow the use of
a file for both input and output. A file opened for output
will be overwritten whenever it is called once again for
input and conversely. This leads to the use of an inter-
mediate temporary file to look for any possible existence
of a given size. This file will be used for all variable-sized
symbols handled.

As was said before, the number of sizes of a variable-
sized symbol is limited to 256. Beyond this limit, the
system will use the smallest size higher than the required
one. The system holds the biggest size as the default size.
The intermediate file used previously will be used to de-
termine this size of substitution. This will be done for all
variable-sized symbols.

The size of an extensible symbol of an expression
can be given if the expression itself does not comprise
another extensible symbol. A problem arises when sev-
eral extensible symbols are overlapping in the same ex-
pression. TEX and METAFONT should be called as many
times as variable-sized symbols overlap. The TFM and
*PK files must be cleared in order to compute them ev-
ery time with the new sizes as the font’s parameters, as
in the following:

TEX
tex DVI

PS
PDF

�

TFM *PK

clear
��

�

Glyph parameters During the development of such a dy-
namic font of variable-sized symbols, some difficulties
arise in determining:

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003 325

Azzeddine Lazrek

• the shape of the glyph according to the dimensions
of the character (e.g., the curvilinearity, the level of
concavity or convexity, of a bracket);

• the shape of the glyph at both small sizes and big
sizes;

• the position of the glyph, points of control, accord-
ing to the dimensions of the character;

• the dimensions, the width and the length (height
plus depth), of the box of the character;

• the position, the height and depth, of the character
compared to the baseline;

• the position of the character with respect to the
other characters of the same line, the space between
characters;

• the position of the character compared to the ex-
pression covered by this character;

• etc.

Choices should be made with respect to:
• the nature of the symbol that determines the space
both before and after the composed symbol (e.g.,
\mathinner);

• the lengthening to be added to the initial length
(respectively the width) of the expression covered
by the brackets (respectively the kashida) under the
terms of the rules of the typography;

• the form of boundaries of kashida in other to join it
with the preceding part and/or the following part
(e.g., for the symbols for sum, product and limit);

• etc.

For example, the parameters that determine the
brackets are:
• the level of curvilinearity of the bracket;
• the level of thickness of the middle of the bracket;
• the level of thickeness of the ends of the bracket;
• the shape of the ends of the bracket, as they are to
be identical at the top and the bottom;

• the shape of the bracket depends on the size of the
covered expression.

Examples:

� 1 2 3
4 5 6
7 8 9

�� 0 1 2 3
4 5 6 7
1 2 3 4
5 6 7 8

�� 0 1 2 3 4
5 6 7 8 9
0 1 2 3 4
5 6 7 8 9
0 1 2 3 4

�
The kashida always has the same thickness, but the

concavity of the kashida varies within limits fixed by the
rules of the calligraphy of the style Naskh [4].

The symbol ������
�

� obtained by the command \lsum
from the system RyDArab9 [8, 9], is a composition of
the fixed part �

�

� , obtained with the xnsh font from
ArabTEX10 [7], and of the extensible rectilinear part ���

whose effective size depends on an automatic examina-
tion of the context.

The symbol�Æ obtained by the command \csum
from the system RyDArab with the present package
CurExt, is a composition of the fixed part Æ , of the font
NasX11, and the variable-sized curvilinear part kashida
� whose effective size depends on an automatic way of
the context. The problem of drawing these parts of a
component symbol arises then.
Examples:

�
�Æ

1 − �− �− � = �

�
�Æ

1 − �− � = �

�
�Æ

1 − � = �

Syntax of commands Hereafter, some commands offered
by the CurExt package.

The syntax for the combined parentheses command
is:
$\parentheses
{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr
7 & 8 & 9\cr

}}$

� 1 2 3
4 5 6
7 8 9

�
The syntax for the open (or left) parenthesis com-

mand is:
$\openparentheses
{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr
7 & 8 & 9\cr

}}$

� 1 2 3
4 5 6
7 8 9

The syntax for the close (or right) parenthesis com-
mand is:
$\closeparentheses
{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr
7 & 8 & 9\cr

}}$

1 2 3
4 5 6
7 8 9

�
The syntax for the open (or right) parenthesis, in an

Arabic mathematical presentation, command is:

9. The extension RyDArab is a system for processing mathe-

matical documents in an Arabic presentation. It allows the com-

position of mathematical expressions with specific symbols spread-

ing out from right to left according to the Arabic writing. It has

been developed by the author.

10. The extension ArabTEX is a system for processing Arabic

textual document. It has been developed by K. Lagally.

11. The font NasX is a kernel of an Arabic mathematical font.

It offers some Arabic literal symbols. It has been developed by

the author.

326 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

CurExt, Typesetting Variable-Sized Curved Symbols

\arabmath
$ {\openparentheses
{{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr
7 & 8 & 9\cr

}}}}$

3 2 1
6 5 4
9 8 7

�

The syntax for the Arabic sum command is:
\arabmath
$ {\csum_{b=T-1}^{s}}$

�

�Æ

1 − � = �

The syntax for the Arabic product command is:
\arabmath
$ {\cprod_{b=T-1}^{s}}$

�

���
1 − � = �

The syntax for the Arabic limit command is:
\arabmath
${\clim_{c \to 0}
c{{}^2}}$

2
����

0 ← �

The syntax for the Arabic kashida command is:
\arabmath
$ {\kashida{9mm}}$ �

Conclusions
The application CurExt allows composition of variable-
sized curvilinear symbols. This system will make it possi-
ble to compose automatically delimiters of mathematical
expressions that can vary in a bi-dimensional way. It also
allows the composition of kashida in Arabic mathemati-
cal symbols such as the symbols of sum, product and limit.

The number of various sizes for the brackets or the
kashida is limited to 256. Beyond this limit, the system
will use the smallest size higher than the required one or
the biggest size already computed. The number of oc-
currences of the same size is unlimited.

A choice of the parameters to compose brackets is
made with respect of typographic and calligraphic rules
in use. A compromise between certain parameters is nec-
essary. In some cases, the choice is subjective.

The system CurExt will allow looking after the ty-
pography of the variable-sized curvilinear symbols such
as brackets or the integral symbol. It also makes it possi-
ble to take into account the compliance with the rules of
the calligraphy of a cursive writing such as Arabic. The
kashida will be carried out in the strictest respect of Arab
calligraphy.

A significant application of such a system will be the
justification of a text in a cursive writing through comply-
ing with the calligraphic rules.

In addition to the previous limits, METAFONT

fonts under an ASCII encoding generate many problems
with the new formats of multilingual electronic docu-

ments. A study has been started (and since completed,
see [2]) for PostScript Type 1/3 or OpenType fonts
under a Unicode encoding.

References
[1] Jacques André and Irène Vatton, Dynamic optical

scaling and variable-sized characters, EP—ODD 7
(1994), no. 4, 231–250.

[2] Mostafa Banouni, Mohamed Elyaakoubi, and
Azzeddine Lazrek, Dynamic Arabic mathematical
fonts, International Conference on TEX, XML,
and Digital Typography—TUG 2004, Xanthi,
Greece, Springer Lecture Notes in Computer Sci-
ence (LNCS), vol. 3130, Springer-Verlag, 2004,
http://www.springerlink.com/index/
URHRT2EYKYHH1RPA, pp. 149–157.

[3] Daniel M. Berry, Stretching Letter and Slanted-

baseline Formatting for Arabic, Hebrew and Persian

with ditroff/ffortid and Dynamic PostScript

Fonts, Software—Practice & Experience (1999),
no. 29:15, 1417–1457.

[4] Mohamed haCm al XTaT, Les règles de la cal-

ligraphie arabe, Ensemble calligraphique des styles

d’écritures arabes, Univers des livres, Beyrouth,
Liban (1986), in Arabic.

[5] Donald Ervin Knuth, The TEXbook, Addison-
Wesley, 1984.

[6] , The METAFONTbook, Addison-Wesley,
1986.

[7] Klaus Lagally, ArabTEX—Typesetting Arabic

with Vowels and Ligatures, EuroTEX’92, Prague
(1992).

[8] Azzeddine Lazrek,A package for typesetting Arabic

mathematical formulas, Die TEXnische Komödie,
DANTE e.V. 13 (2001), no. 2/2001, 54–66.

[9] , Aspects de la problématique de la confection
d’une fonte pour les mathématiques arabes, Cahiers
GUTenberg 39–40, Le document au XXIe siècle
(2001), 51–62.

[10] Vincent Quint and Irène Vatton, Grif: an inter-

active system for structured document manipulation,
Text Processing and Document Manipulation, ed.
J. C. van Vliet, Cambridge University Press, Cam-
bridge, UK (1986), no. 4, 200–213.

[11] Johny Srouji and Daniel M. Berry, Arabic format-
ting with ditroff/ffortid, EP—ODD 5 (1992),
no. 4, 163–208.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003 327

