
TUGboat, Volume 16 (1995), No. 4 395

Technical
Working Group

Reports

A proposed standard for specials

Tomas G. Rokicki

Introduction

This note presents the current state of the draft
standard, as presented by the author and Michael
Sofka at the standards session at TUG’95.

1 Identifying syntax

Standard specials shall be syntactically identified by
beginning with a colon (‘:’). All specials beginning
with a colon shall follow the guidelines established
here.

Any special beginning with a colon, followed
by an agreed keyword with agreed semantics, shall
be interpreted according to the rules set out in this
document and according to the agreed semantics of
that keyword.

Any special beginning with two consecutive col-
ons shall be considered an experimental special. It
will be interpreted following the syntax and scoping
semantics specified in this document, but individual
drivers are free to interpret these specials however
they wish. This convention allows experimentation
with specials in conjunction with the scoping mech-
anism described here.

2 Syntax

Standard specials shall consist of a sequence of the
95 printable ASCII characters plus the tab charac-
ter. Tabs will always be interpreted as spaces. Each
standard special shall begin with a colon, optionally
followed immediately by another colon. Following
this shall be a sequence of elements separated by
whitespace. Whitespace is also allowed between the
colon (or optional colon) and the first element.

Whitespace shall consist of any number of tab
or space characters.

The elements shall fall in the following cate-
gories: symbol, keyword, key/value pair.

We also define the syntax of numbers, dimen-
sions, and lists, for convenience.

A symbol is any sequence of characters. If the
symbol consists of only the 95 printable ASCII char-
acters, and does not contain a double quote, equals
sign, space, tab, backslash, or comma, it can be



396 TUGboat, Volume 16 (1995), No. 4

specified by the sequence of characters that com-
prise it; when a symbol is so specified, it is called
a simple symbol. Otherwise, it can be specified by
enclosing the exact characters in a pair of double
quotes. Any double quote or backslash within the
symbol must be preceded by a backslash. When a
symbol is specified through the use of double quotes,
it is a quoted symbol.

A keyword is a simple symbol.
A number is a simple symbol that consists of

an optional negative sign followed by a sequence of
at least one digit, with one optional period (‘.’) in-
cluded in the sequence of digits.

A dimension is a symbol that obeys the rules
of a number except that it is followed immediately
(with no intervening whitespace) by one of the fol-
lowing pairs of characters: ‘bp’, ‘cm’, ‘dd’, ‘in’, ‘mm’,
‘pc’, ‘pt’, ‘sp’.

An equals sign shall appear only as part of a
quoted symbol, or to separate a keyword and some
other symbol forming a key/value pair.

A list is a sequence of symbols separated by
commas with no intervening whitespace.

Figure 1 gives a BNF formulation for standard
specials. Square brackets enclose optional compo-
nents. Quotes enclose literal characters. Parenthe-
ses group. Angle brackets enclose nonterminals. An
asterisk represents zero or more occurrences; a plus
sign indicates at least one and possibly more occur-
rences. Vertical bars indicate choice.

In general, case is significant in specials.

3 Specials scoping and infrastructure

Specials exist in the DVI file as just another sequen-
tial command. Yet, often we desire a special to have
a scope. One use of specials is to modify the way
certain commands in the DVI file are interpreted.
For instance, a special might indicate that all subse-
quent characters until an overriding special shall be
rendered in a specific color. Another special might
indicate that a certain set of pages is to be printed on
different media. Yet a third special might indicate
that the background color of the entire document
should be mauve.

For this reason, we are introducing standard
scoping semantics for standard specials.

3.1 Flat DVI files

Ideally, scoping could always be handled simply by
placing an appropriate special at the beginning and
end of each scoped region, and no further action
would need to be taken. For various reasons, as we
shall describe, this is not always possible or conve-
nient. Nonetheless, such a ‘flat’ scoping would serve

as an ideal model for the driver writer, and its se-
mantics should form a base on which more complex
scoping rules can be built.

In this section, we describe how flat DVI files are
interpreted. At the minimum, each driver should be
capable of handling flat DVI files.

A flat DVI file is one that can be processed
(with respect to specials) with no prescanning or
preprocessing. Each special is located syntactically
where it belongs semantically. In addition, assum-
ing the beginning of the first page has been scanned
for document global specials, each page can be pro-
cessed and reprocessed independently of any other
and in random order, skipping arbitrary sequences
of pages. Thus, a flat DVI file is ideal for quick
browsing and previewing.

3.1.1 Object specials

The first category of specials, called object specials,
is those specials that themselves render objects to
the page, but do not affect the rendering of other
objects. One such example is a special that indicates
that a particular graphical figure should be rendered
at a particular location on the page.

All object specials shall begin with the keyword
‘object’.

Object specials take several implicit parameters
that affect how they are rendered. These implicit
parameters include the current DVI location on the
page, and the DVI magnification.

Unless otherwise specified for a particular ob-
ject special, all object specials shall be interpreted
such that their lower left-hand corner is rendered
at the current DVI location. In addition, all object
specials shall be scaled by the DVI magnification in
effect.

Object specials cannot take the optional scop-
ing keywords described in section 3.2.

The initial syntax for object specials is as fol-
lows:

<object-specifier> := ’:’ [’:’] <w> ’object’ <w>

3.1.2 Attribute specials

The second category of specials is attribute specials.
These specials affect the way the page is rendered.
Normally, an attribute special affects the rendering
state for subsequent DVI commands until overridden
by another attribute special that affects the same
rendering attribute. We shall discuss how our scop-
ing mechanism can change these rules in section 3.2.

All attribute specials begin with the keyword
‘attribute’.



TUGboat, Volume 16 (1995), No. 4 397

<standard-special> := ’:’ [’:’] [<whitespace>] (<element> <whitespace>)+

<element> := <key-value>

| <simple-symbol>

<whitespace> := (tab | ’ ’)+

<w> := <whitespace>

<key-value> := <simple-symbol> [’=’ <symbol-or-list>]

<symbol-or-list> := <symbol> | <list>

<list> := <symbol> (’,’ <symbol>)*

<symbol> := <simple-symbol>

| <quoted-symbol>

<simple-symbol> := (<printable-char-except-space,tab,comma,backslash,equals,doublequote>)+

<quoted-symbol> := ’"’ (<quoted-char>)* ’"’

<quoted-char> := <space-or-printable-char-except-backslash,doublequote>

| ’\’ ’\’ | ’\’ ’"’

<number> := [’-’] (<digit>)+ [. (<digit>)*]

| [’-’] . (<digit>)+

<dimension> := <number> <unit>

<unit> := ’bp’ | ’cm’ | ’dd’ | ’in’ | ’mm’ | ’pc’ | ’pt’ | ’sp’

Figure 1: A BNF grammar for specials

One interesting case should be mentioned here.
In a flat DVI file, it is possible for an attribute spe-
cial to contain the scoping keyword ‘pop’. If the
‘attribute’ keyword in a flat DVI file is followed
immediately by the keyword ‘pop’, then that cor-
responding attribute in the rendering state is set
(back) to its initial state. (This is necessary be-
cause, when flattening scoped specials, the initial
state might not be known for all attributes; this pro-
vides a convenient way to access that default initial
value.)

The initial syntax for attribute specials is as
follows:

<attribute-specifier> := ’:’ [’:’] <w>

’attribute’

(<w> <scope>)* <w>

<scope> := ’push’ | ’pop’

| ’page’ | ’global’

3.2 Scoped specials

Sometimes a special must occur at a syntactic loca-
tion different from where it semantically affects the
rendering state. One example of this is where an at-
tribute affecting the background color of the paper is
specified as part of the running text of a document,
in a document with headers. Normally, this spe-
cial will follow the headline in the DVI file, because
TEX’s output routine typically ships the header be-
fore the whatsits attached to the body text. So by

the time the DVI driver sees the special, it has prob-
ably already rendered the header, so it may be diffi-
cult or inconvenient to change the background color
of the sheet at this point.

Another example is when a colored paragraph is
broken across a page boundary, and the DVI driver
wishes to render only the second page, without scan-
ning the first page. In the absence of specials, this
is easily done. However, if there is only a single spe-
cial specifying the red color at the beginning of the
paragraph (on page one), there is no indication in
page two that the color should still be red.

As a final example, consider the use of nested
attribute specials. One word in a blue paragraph
is to be colored green. The special at the end of
the green word indicates that the ‘previous’ color
state should be restored. In this case, the special
at the beginning of the paragraph, indicating that
the paragraph should be blue, is also semantically
visible at the end of the green word.

The scoping rules we introduce in this section
introduce a scoping mechanism, and define how spe-
cials that use this mechanism, and thus cause a DVI

file to be scoped (rather than flat), can be trans-
formed into flat specials for easier rendering.



398 TUGboat, Volume 16 (1995), No. 4

3.2.1 Stacks

The first mechanism is a convenient ‘stack’ mech-
anism that allows the previous state of a particu-
lar attribute to be easily restored. The two key-
words that indicate this mechanism should be used
are ‘push’ and ‘pop’.

If the keyword ‘attribute’ in a special is fol-
lowed by the keyword ‘push’, then the current state
of that attribute is pushed onto a stack internal to
the DVI processor. Then, the remainder of the spe-
cial is used to determine the new value of the at-
tribute.

If the keyword ‘attribute’ in a special is fol-
lowed by the keyword ‘pop’, then the previously
saved value of the attribute is restored. Any actual
attribute value specified in the special is ignored.

If the stack is empty when a ‘pop’ special is
encountered, then the value of the attribute is set to
the default initial value for that attribute.

Attribute specials that use neither push nor pop
are still fully legal; they affect the current setting of
the attribute, but do not affect the stored stack.

Note that each attribute has its own indepen-
dent stack. Thus, the following sequence of specials
is perfectly legal:

:attribute push color red

:attribute push trap true

:attribute pop color

:attribute pop trap

DVI drivers should support a stack depth for
each attribute of at least twenty levels.

3.2.2 Page

Some specials affect the page, or paper, or media,
rather than the rendering of characters or rules. Spe-
cials that specify the paper size or background color
are examples of these. Such specials should ordi-
narily occur before any characters or rules or object
specials on the page itself; such is the case for flat
DVI files.

As discussed before, it is sometimes inconve-
nient or difficult to ensure that these specials actu-
ally occur at the beginning of the page itself. Thus,
we define the scoping keyword ‘page’ that indicates
this special should semantically appear at the begin-
ning of the page. Thus, if a page contains a single
(hypothetical) background color attribute, specified
as

:attribute page backgroundcolor mauve

anywhere on the page, then the page should be ren-
dered with a mauve background.

Note that there is no predefined correlation be-
tween attributes that are specified page and those
that are local. Thus, a special such as

:attribute backgroundcolor mauve

that occurs between two characters on a page makes
little sense. Indeed, where the special obviously af-
fects the entire page, but it is not specified with a
page keyword, the operation of the DVI driver shall
be undefined.

If multiple page attribute specials for the same
attribute appear on a page, they shall all be seman-
tically moved to the top of the page — in the same
order as they occur on the page.

3.2.3 Global

Some specials affect the document as a whole, or it
is desired that they affect the document as a whole.
Specials that define a paper size are one example of
these. Generally, such specials should occur before
any characters or rules or object specials on the first
page.

As discussed before, it is sometimes inconve-
nient or difficult to ensure that these specials actu-
ally occur at the beginning of the page. Thus, we
define the scoping keyword ‘global’ that indicates
this special should semantically appear at the begin-
ning of the entire document. Thus, if a document
contains a single (hypothetical) paper size attribute,
specified as

:attribute global papersize 8.5in 11in

anywhere in the document, then the entire docu-
ment should be rendered on 8.5′′ × 11′′ paper.

For pragmatic reasons (we may not want to, or
be able to, prescan the entire document), we require
that such global specials occur somewhere on the
first page in order to take effect.

Note that there is no predefined correlation be-
tween the attributes that are specified global and
those that are local or page-specific.

If multiple global attributes for the same at-
tribute appear in a document, all shall be semanti-
cally moved to the front of the document — in the
same order as they occur in the document.

3.3 Flattening process

The scoping rules are concentrated on the distinc-
tion between a special’s syntactic and semantic lo-
cation. The process of flattening a DVI file resolves
these differences, by eliminating all stack operations
(except for defaulting pops) and by moving all spe-
cials to their logical semantic location. This opera-
tion converts a scoped DVI file to a flat DVI file.



TUGboat, Volume 16 (1995), No. 4 399

When flattening occurs, object specials remain
in their original location.

For instance, consider a scoped DVI file that
appears as follows:

Page 1:

<text>

:attribute push color red

<text>

:attribute global backgroundcolor mauve

Page 2:

<text>

:attribute push color green

<text>

:attribute color blue

<text>

:attribute page papersize 8.5in 11in

:attribute pop color

<text>

Page 3:

<text>

:attribute pop color

<text>

This would be flattened into the following flat DVI

file:

Page 1:

:attribute global backgroundcolor mauve

<text>

:attribute color red

<text>

:attribute pop color

Page 2:

:attribute page papersize 8.5in 11in

:attribute color red

<text>

:attribute color green

<text>

:attribute color blue

<text>

:attribute color red

<text>

:attribute pop papersize

:attribute pop color

Page 3:

:attribute color red

<text>

:attribute pop color

<text>

If a page reversal program that obeys the spe-
cials is run, the following DVI file would result. Note
that the only difference is that the global specials are
moved from the original first page to the new first
page.

Page 3:

:attribute global backgroundcolor mauve

:attribute color red

<text>

:attribute pop color

<text>

Page 2:

:attribute page papersize 8.5in 11in

:attribute color red

<text>

:attribute color green

<text>

:attribute color blue

<text>

:attribute color red

<text>

:attribute pop papersize

:attribute pop color

Page 1:

<text>

:attribute color red

<text>

:attribute pop color

This flattening can be performed with a spe-
cial DVI to DVI processor (which we hope to pro-
vide). The use of such a preprocessor will allow
fancy scoped specials to be used in an environment
that supports only flat specials. For DVI files that
are intended to be widely distributed and portable,
such a flattening should probably be done.

This flattening can also be performed dynami-
cally, as a DVI file is being created or read from disk,
so long as single-page scanning is available. (We
hope to provide code for this as well, that will allow
easy integration of scoped specials into previewers
and printer drivers with a minimum of effort.)

4 Proposed object specials

The primary and most important proposed object
special is that for encapsulated PostScript file inclu-
sion.

4.1 EPSF inclusion

The syntax for the encapsulated PostScript inclu-
sion special is as follows:

<epsf-special> := <object-specifier>

(’epsf’ | ’psfile’) ’=’

<symbol>

(<w> <epsf-keyword>)* [<w>]

<epsf-keyword> := ’width=’ <dimen>

| ’height=’ <dimen>

| ’scale=’ <number>

[’,’ <number>]

| ’clip=’ (’on’ | ’off’)

| ’boundingbox=’

<number> ’,’ <number> ’,’

<number> ’,’ <number>

In this special, the symbol following the key-
word ‘epsf’ or ‘psfile’ is interpreted as a filename



400 TUGboat, Volume 16 (1995), No. 4

containing a encapsulated PostScript file for inclu-
sion. This file should follow the Adobe standards
for EPSF files; otherwise the effects of this special
are undefined.

Positioning occurs as follows. First, a bounding
box is determined. If one is specified in the special
it is used. Otherwise, if none is specified in the spe-
cial and the keyword is given as ‘epsf’, the EPSF

document itself is scanned for a bounding box.
The bounding box values at this point, inter-

preted in PostScript units, map the region of the
illustration that will be included.

The TEX width is set to the horizontal size of
the bounding box, and the TEX height is set to
the vertical size of the bounding box, both inter-
preted as 72 units to the inch. Consideration of any
width, height, and scale parameters may further af-
fect these values, as described below.

Next, the optional width and height specifiers
are considered. If neither is given, this step is omit-
ted. If both are given, their values replace the TEX
height and width set before. If only one is given, it
replaces the corresponding TEX value, and the other
TEX value is set to preserve the aspect ratio.

Next, if the ‘scale’ keyword is given, the TEX
height and width are further modified. If only one
numeric parameter is given, both the width and
height are multiplied by this parameter. Otherwise,
the width is multiplied by the first parameter and
the height is multiplied by the second parameter.

Finally, the width and height values are multi-
plied by the current DVI magnification in effect.

The resulting values describe the size of a rect-
angle on the DVI page. The lower left hand corner
of this rectangle is positioned at the current DVI lo-
cation. The geometric mapping from the original
bounding box to this rectangle defines the scaling
that is performed on the EPSF file when it is ren-
dered.

If the clipping keyword is specified to be ‘on’,
or if no clipping keyword is specified, the rendering
of the EPSF file will be constrained to fall within
the DVI rectangle calculated above. Otherwise, no
clipping will be performed, and if the EPSF file ren-
ders outside its bounding box borders, portions of
the image will also be rendered outside the DVI rect-
angle.

4.1.1 PS vs. EPSF

The effects of the keyword ‘epsf’ and the keyword
‘psfile’ are almost identical — with one minor dif-
ference. If ‘epsf’ is specified, then the bounding
box keyword and values are optional; if they are not
specified, the bounding box is read from the EPSF

file. If ‘psfile’ is specified, the bounding box must
be specified; the operation of the special is undefined
if no bounding box is specified. (The reasoning be-
hind this seeming inconsistency is partially political
and partially religious.)

In order to include a normal EPSF image in its
entirety, either the ‘psfile’ or the ‘epsf’ keyword
can be used; if a bounding box value is specified in
the special command, the semantics are equivalent.

If only a rectangular subportion of an EPSF im-
age or PS page is to be rendered, then the ‘psfile’
keyword should be specified, along with a bounding
box describing precisely what portion of the image
should be included. Clipping should be turned on
to ensure that the rest of the image does not show
up outside the DVI rectangle.

4.1.2 Bounding box

The bounding box is specified as a comma-separated
list of numbers. These numbers are interpreted as
PostScript units. There are 72 PostScript units to
the inch. The four numbers are, in sequence, the x-
coordinate of the lower left corner, the y-coordinate
of the lower left corner, the x-coordinate of the up-
per right corner, and the y-coordinate of the upper
right corner. All four must be specified.

Note that we do not restrict these numbers to
be integers. While Adobe requires these to be in-
tegers in their Document Structuring Conventions,
some applications generate floating point numbers.
In addition, the higher precision afforded by floating
point might be useful in some circumstances.

4.1.3 Scaling

The scaling parameter consists of one or two num-
bers separated by a comma. These are used to spec-
ify a scaling ratio for an EPSF image. If only one
number is specified, the scaling preserves the aspect
ratio of the image.

4.1.4 Clipping

Clipping can be set to either ‘on’ or ‘off’. The de-
fault is ‘on’.

4.1.5 Rotation

Rotation is not currently supported, although it is
currently under discussion.

5 Proposed attribute specials

5.1 Color

Under development.



TUGboat, Volume 16 (1995), No. 4 401

5.2 Background color

Under development.

5.3 Paper size

Paper size and orientation are important character-
istics of the document, and should be specified in the
document itself rather than on the driver command
line. The syntax for the paper size special is:

<papersize-special> := <attribute-specifier>

’papersize’

[<w> <dimension>

<w> <dimension>] [<w>]

The value (composed of two dimensions) may
be omitted only if one of the specified scoping oper-
ators is ‘pop’.

The dimensions specify horizontal and then ver-
tical size.

As is conventional, the DVI origin is located one
inch down and one inch from the left of the top left
corner of the paper.

A typical papersize special is

:attribute global papersize 8.5in 11in

To specify that landscape letter size is in effect
for the current page forward, use

:attribute page push papersize 11in 8.5in

followed by

:attribute page pop papersize

on the page you wish to return to portrait.

6 Document history

This section shall record a history of the changes to
this document.

22 September 1995: Originated by Tomas Ro-
kicki on the basis of extensive discussions at TUG’94
and TUG’95, discussion on the TWG-DVI mailing
list, and discussion at a meeting at MSRI in Decem-
ber of 1994.

10 January 1996: Edited for publication in TUG-
boat by Robin Fairbairns, Barbara Beeton, and Tomas
Rokicki.

� Tomas G. Rokicki
725B Loma Verde
Palo Alto, CA 94303
USA
Email: rokicki@cs.stanford.edu


