
TUGboat, Volume 9 (1988), No. 1 37

A Screen Previewer for VM/CMS

Don Hosek

A good previewer is a useful tool for working with

m, but unfortunately, there are very few available.

For users of TI-$ under the IBM VM/CMS system,
the only choice available used to be DVI82, a

Versatec driver that, as an added feature, allowed

previewing on IBM 3279 and 3179-G terminals.
To deal with this situation, I wrote DVIview, a

l&X previewer that displays its output on VT640-

compatible displays connected to an IBM mainframe

via either a 3705 controller or a Series-l/717l

protocol converter. In addition, the output routines
are modularized enough that it should be a fairly

simple task to modify the program to drive any

graphics terminal connected to the mainframe. (I
have plans to include support for GDDM-driven
displays in the near future.)

DVIview is a lengthy WEB program that inter-

prets the instructions in a DVI file and displays
them on the user's screen as determined by com-

mands typed at the keyboard. The entire page may
be viewed with block outlines of the characters, or

smaller portions of the page may be selected and
viewed using the actual shapes of the TI$ fonts.

Font information is read from PK files. (I cannot

recommend the PK format enough to people writing
new device drivers; the fonts take roughly half the

space of GF files and about a third the space of

PXL files. And PK readers are easier to write!)

The DVIview distribution includes two man-
uals: "Previewing TEX Output With DVIview"

is the users' guide and explains how to use the
program from a user's standpoint. Also included

is "Installing and Customizing DVIview" , intended
for the systems person who installs DVIview. In-

structions are given for installing DVIview as is, as

well as instructions on adding changes to the file
and a "Hitchhikers' Guide to WEB" (for those who

don't care how they get where they're going as long

as they don't have to ride the bus).
Due to the size of the program, it cannot be

distributed over the networks. To obtain a copy
of DVIview and its documentation, send $30 (to

defray duplication costs), a blank tape, and a return

mailer to:

Don Hosek

Platt Campus Center

Harvey Mudd College

Claremont, CA 91711

This article first appeared in m m a g , 1987#7.

The program is public domain, so feel free to give

it away. However, since it is still a young program,

I'd like to keep track of who has copies for purposes

of distributing updates.

Why Should

NOT Output Postscript -Yet

Shane Dunne

University of Western Ontario

In a recent TUGboat issue [I], Leslie Lamport sug-

gested that since PostScript is becoming accepted as

a standard page description language, perhaps
could be modified to output PostScript instead of

DVI code. This is a good idea, but it should not be
done yet for the following reason: At the moment,

the available PostScript literature does not state

precisely how drawn objects are to be rendered on
the output raster. As I will show in this article, such
a specification of Postscript's semantics is urgently

needed to allow precision application programs such

as TEX to properly use the language. I have written
to Postscript's developers, Adobe Systems Inc. of

Palo Alto, California, to draw their attention to this

problem, and suggested that it be resolved publicly

using TUGboat as a forum for discussion.
For readers unfamiliar with the Postscript lan-

guage, a few words of explanation are in order.

PostScript is a language designed specifically for
specifying the output of raster printing devices.

The language is interpreted, with the interpreter
usually resident in the printer itself. It was in-

tended to be human-readable, and hence uses only
printable ASCII characters, but to simplify parsing
it uses a rather cryptic postfix syntax. This is

justified on the grounds that most PostScript pro-
grams will be written automatically as the output

of other applications. PostScript incorporates a

sophisticated device-independent drawing model in

which a single transformation matrix (called the

current transformation matrix or CTM) specifies

the correspondence between the user and device

coordinate systems. User coordinates are floating-

point numbers with essentially infinite resolution;
device coordinates are normally integers.

The incompleteness of the current PostScript

semantic definition is apparent from the following
example. Assume that the CTM of a PostScript de-

vice is set so that one unit in user space corresponds

38 TUGboat, Volume 9 (1988), No. 1

to the distance between adjacent device pixels, and

the point with coordinates (100,100) is well within

the visible part of the output page. (This is what
our driver does.) Now suppose the following

code fragment is executed.

newpath

100 100 moveto

1 0 r l i n e t o
0 1 r l i n e t o

-1 0 r l i n e t o
closepath f i l l

This draws an outline "path" which is a unit square

with lower left-hand corner at (100, loo), and then
fills it with black. It is reasonable to expect that a

single device pixel will be blackened - after all, that
is a black box one unit high by one wide. with the

units we have chosen. However on our QMS PS800

laser printer, the result is a two-pixel by two-pixel

box- four pixels are blackened. It turns out that
whenever you ask for a box which is x units wide

and y units high, you get one which is x + 1 pixels

by y + 1 pixels. Similar things occur with the stroke

command which draws lines-if you ask for a line
width of one unit you get lines two pixels wide, two

units becomes three pixels. and so on.

The practical upshot of this is that our DVI-to-
Postscript driver, which outputs code according to

what the PostScript reference manual says, always
yields TEX rules which are one pixel too long and
one pixel too high.

Attempting to second-guess the programmers
of the PS800 PostScript implementation, I came

up with the following scenario. We begin with the
outline path with four vertices (100, loo), (101,100).

(101,101), and (100,101). Since we are working in

one-to-one scale, multiplying these coordinate pairs
by the CTM may add some translation factors,

but should not make any multiplicative change

to the values. The coordinates, which are real

numbers, must next be converted to integers for

the hardware, but they are already integers, and I
have verified that the translation factors are also.

Thus we can suppose without loss of generality that

the coordinates are unchanged by the CTM. Now
comes the strange part. The implementation seems

to interpret integer-valued coordinate positions as

pixels, and thus says that it must blacken all four
different pixels identified by the four vertices (and,

in this case, nothing else).

So apparently, each distinct coordinate position
(a mathematical point in the plane with zero height

and width) has been identified with a device pixel

(something with very real height and width). Of

course, if I am drawing a box 1 inch by 1 inch at 300
dots per inch, the error is only 1 part in 300. but if I

am drawing small things (small with respect to the

device resolution), the error can be quite serious,

as shown by the above example. Unfortunately.
typesetting and related applications involve small

objects almost exclusively.

It would be more consistent with the Postscript
philosophy to identify integer-valued coordinates

(at 1 : 1 scale) with the lower left-hand corner of

a pixel. This would require a small refinement to
Postscript's fill algorithms.

The PostScript Language Reference Manual [2]

says nothing definitive about the correspondence

between coordinate positions and device pixels. It

defines a virtual graphics machine separated from
the real device by various mechanisms (such as the

CTM) whose exact operation it does not define.

Now in my experience, anything not defined in

a software specification is usually defined by its
implementation, which in turn means that I can

expect different results from different printers, even
at the same dot resolution.

It is of course tempting to say "Why worry
about such details? If you want higher precision
just go to a device with more dots per inch." There

are two answers to this. The first is that 300 dpi

laser printers, and lower-resolution mechanical dot-
matrix printers, are probably going to be around for

some time, and people will always want to use them

at least for previewing. The second answer is that

there really is no substitute for doing things right

in the first place. If the sizes of drawn objects can

be predicted with to-the-pixel accuracy, you can get
the most out of whatever printer you have paid for.

If not. you will always have to settle for less than

what you know the machine can do.

As a developer of precision applications like
drivers, I need a formal definition of how

Postscript's drawing operators (primarily f i l l and

s t roke) should be rendered on raster devices, re-
lating the high-level virtual machine defined by the

language to the low-level hardware. Such a defini-

tion could itself be device-independent, speaking in
terms of a target device with x dots per inch reso-

lution horizontally and y dots per inch vertically. It

could take the form of a published article, perhaps
here in the TUGboat.

Aside from the fill-outline problem I have al-
ready mentioned, at least two other aspects would

have to be addressed (and now I must apologize
for using terms which will be unfamiliar to some

readers). First, are CTM-transformed coordinates

rounded or truncated in order to be converted to

TUGboat, Volume 9 (1988), No. 1

integers for the hardware? (I recommend trun-
cation since it is fast, and the user may change

it to rounding by adding .5 to the translation

components in the CTM.) Second, what is the

precise orientation of bitmap characters generated

by imagemask, with respect to the current point. I

suggest that the current point should coincide with

the extreme lower left-hand corner of the rendered

image. That is, when the CTM is as described
in the earlier example, the current point should

identify the lower left-hand corner of a pixel, and
this pixel should be overlaid with the lower leftmoet

pixel in the bitmap image. (A related issue is that
when the coordinate system is inverted vertically,

the current point should coincide with the extreme
upper left-hand corner of the i m a g e t h i s does not

appear to happen with our printer.)

A description of how the PostScript software is
structured, distributed, and implemented on specific

devices would also help applications developers to

understand its operation. My guess is that the

basic PostScript interpreter is provided by Adobe

Systems, and each device manufacturer writes their

own driver, but this is only a guess. Perhaps device

manufacturers tell Adobe how their machine works,
and later receive a fully-configured interpreter in

machine-code form. Just how much does the device

manufacturer do, and by implication, how much
can be expected from a given Postscript-compatible

product?

The issues raised in this article came up in
the course of research into musical score setting

using TEX. I have been working with a modified
DVI-to-Postscript driver which allows inclusion of

arbitrary PostScript code into source material

using the \ spec ia l primitive. The idea is to use

the power of PostScript to draw all the variable
elements of musical material (e.g. note stems of

variable length but fixed width). The lack of a

definitive explanation of how Postscript's graphic

primitives work at the device level forced me to

spend a great deal of time writing tiny Post-

Script programs and examining the results-with

a microscope! - to figure out what the printer was

doing. I needed the microscope only to measure the
extent of various inaccuracies in size and position -

at 300 dpi the existence of these inaccuracies is

immediately obvious to the naked eye.

References:

[l] Lamport, L. Output for the Future. TUG-

boat 8,l (April 1987).
[2] Adobe Systems Inc. PostScript Language Ref-

erence Manual. Addison-Wesley, Reading, Mas-

sachusetts. 1985.

Index to Sample Output

from Various Devices

Camera copy for the following items in this issue
of TUGboat was prepared on the devices indicated,
and can be taken as representative of the output

produced by those devices. The bulk of this issue

has been prepared at the American Mathematical

Society, on a VAX 8600 (VMS) and output on an
APS-p5 using resident CM fonts and additional

downloadable fonts for special purposes.

Apple Laserwriter (300dpi):
ArborText advertisement, p. 110.

- rnnology, Inc., advertisement, p. 103.

Canon CX (300 dpi): Georgia Tobin, The
ABC's of special effects, p. 15.

Compugraphic 8600 (1301.5 dpi):
W t l advertisement, p. 106.

HP LaserJet (300dpi):

Personal TJ$ advertisement, p. 99.

Linotronic 100 (1270 dpi):
Design Science advertisement, p. 105.

- Kellerman and Smith advertisement, cover 3.
- Micro Publishing advertisement, p. 101.

Xerox 4500 (300 dpi): Greek sample text,
in Silvio Levy, Using Greek fonts with w,
p. 22, as indicated.

